Cryptocurrency Market Is Healing, Says JPMorgan Strategist
- The research note highlighted stability in the Bitcoin futures market.

The cryptocurrency market has seen immense selling pressure since 12 May 2021. The overall market cap of digital currencies has lost nearly 50% of its value in the last six weeks. However, the latest research note from JPMorgan, one of the world’s largest investment banks, highlights the signs of healing in the cryptocurrency market.
According to a recent report published by Bloomberg citing the research note by JPMorgan strategists including Josh Younger and Veronica Mejia Bustamante, the latest stability in the Bitcoin futures market is a positive sign for the cryptocurrency market. However, the overall crypto market is not healthy as of now.
“The near-term setup is challenging. There is likely still an overhang of underwater positions which need to be cleared through the market. So, while the cryptocurrency market shows signs that it is not yet healthy, it does also appear to be beginning the process of healing,” the research note states.
Earlier this month, Nikolaos Panigirtzoglou, Managing Director, Global Market Strategy at JPMorgan, said that the institutional demand for Bitcoin is weak. During an interview with Business Insider, Panigirtzoglou mentioned that a break below $30,000 is necessary for the world’s largest cryptocurrency to attract institutional investors.
Cryptocurrency Whales
Since May 2021, the leading cryptocurrency accounts have accelerated their transfers amid market volatility. Last week, a well-known Ethereum whale account moved 81,760 ETH from a digital wallet to cryptocurrency exchange Binance. Similarly, XRP whales have also started moving the world’s 7th largest cryptocurrency from leading digital exchanges. XRP wallet transferred 26 million coins from digital exchange Binance to a crypto wallet on Thursday 24 June at 17:00 UTC. Furthermore, the Bitcoin network saw a surge in whale transactions over the last few days. According to Whale Alert, a Blockchain Blockchain Blockchain comprises a digital network of blocks with a comprehensive ledger of transactions made in a cryptocurrency such as Bitcoin or other altcoins.One of the signature features of blockchain is that it is maintained across more than one computer. The ledger can be public or private (permissioned.) In this sense, blockchain is immune to the manipulation of data making it not only open but verifiable. Because a blockchain is stored across a network of computers, it is very difficult to tamper with. The Evolution of BlockchainBlockchain was originally invented by an individual or group of people under the name of Satoshi Nakamoto in 2008. The purpose of blockchain was originally to serve as the public transaction ledger of Bitcoin, the world’s first cryptocurrency.In particular, bundles of transaction data, called “blocks”, are added to the ledger in a chronological fashion, forming a “chain.” These blocks include things like date, time, dollar amount, and (in some cases) the public addresses of the sender and the receiver.The computers responsible for upholding a blockchain network are called “nodes.” These nodes carry out the duties necessary to confirm the transactions and add them to the ledger. In exchange for their work, the nodes receive rewards in the form of crypto tokens.By storing data via a peer-to-peer network (P2P), blockchain controls for a wide range of risks that are traditionally inherent with data being held centrally.Of note, P2P blockchain networks lack centralized points of vulnerability. Consequently, hackers cannot exploit these networks via normalized means nor does the network possess a central failure point.In order to hack or alter a blockchain’s ledger, more than half of the nodes must be compromised. Looking ahead, blockchain technology is an area of extensive research across multiple industries, including financial services and payments, among others. Blockchain comprises a digital network of blocks with a comprehensive ledger of transactions made in a cryptocurrency such as Bitcoin or other altcoins.One of the signature features of blockchain is that it is maintained across more than one computer. The ledger can be public or private (permissioned.) In this sense, blockchain is immune to the manipulation of data making it not only open but verifiable. Because a blockchain is stored across a network of computers, it is very difficult to tamper with. The Evolution of BlockchainBlockchain was originally invented by an individual or group of people under the name of Satoshi Nakamoto in 2008. The purpose of blockchain was originally to serve as the public transaction ledger of Bitcoin, the world’s first cryptocurrency.In particular, bundles of transaction data, called “blocks”, are added to the ledger in a chronological fashion, forming a “chain.” These blocks include things like date, time, dollar amount, and (in some cases) the public addresses of the sender and the receiver.The computers responsible for upholding a blockchain network are called “nodes.” These nodes carry out the duties necessary to confirm the transactions and add them to the ledger. In exchange for their work, the nodes receive rewards in the form of crypto tokens.By storing data via a peer-to-peer network (P2P), blockchain controls for a wide range of risks that are traditionally inherent with data being held centrally.Of note, P2P blockchain networks lack centralized points of vulnerability. Consequently, hackers cannot exploit these networks via normalized means nor does the network possess a central failure point.In order to hack or alter a blockchain’s ledger, more than half of the nodes must be compromised. Looking ahead, blockchain technology is an area of extensive research across multiple industries, including financial services and payments, among others. Read this Term tracking and Analytics Analytics Analytics may be defined as the detection, analysis, and relay of consequential patterns in data. Analytics also seeks to explain or accurately reflect the relationship between data and effective decision making. In the trading space, analytics are applied in a predictive manner in an attempt to more accurately forecast the price. This predictive model of analytics generally involves the analysis of historical price patterns that are used in an attempt to determine certain price outcomes. Analytics may also be structured with a descriptive model, where readers attempt to draw a correlation and better understanding as to how and why traders react to a particular set of variables. Traders sometimes implement technical indicators such as moving averages, Bollinger Bands, and breakpoints which are built upon historical data and are used to predict future price movements. How Analytics Relates to Algo TradingAnalytics are relied upon in the concept of algorithmic trading where software is programmed to autonomously signal and/or execute buy and sell orders based upon a series of predetermined factors. In the institutional space, Algo-trading has become vastly competitive over the years as trading institutions seek to outperform competitors through automated systems and the virtual application of trading strategies.The digestion and computation of analytics are also seen in the emerging field of high-frequency trading, where supercomputers are used to analyze multiple markets simultaneously to make near-instantaneous automated trading decisions. Platforms that support HFT have the capability to significantly outperform human traders.This is due to the innate ability to be able to comprehensively analyze big data sets while taking under do consideration an innumerable sum of factors that humans are incapable of comprehending in such speed. Additionally, analytics are seen with backtesting. Backtesting is used by traders to test the consistency and effectiveness of trading strategies and software-based trading solutions against historical price data. Backtesting also serves as an ideal playground for the further development of high-frequency trading as well as evaluating the performance of manual or automated trades. Analytics will continue to have an increasingly significant role in trading as emerging technologies and the advancement of trading applications progress beyond human capability. Analytics may be defined as the detection, analysis, and relay of consequential patterns in data. Analytics also seeks to explain or accurately reflect the relationship between data and effective decision making. In the trading space, analytics are applied in a predictive manner in an attempt to more accurately forecast the price. This predictive model of analytics generally involves the analysis of historical price patterns that are used in an attempt to determine certain price outcomes. Analytics may also be structured with a descriptive model, where readers attempt to draw a correlation and better understanding as to how and why traders react to a particular set of variables. Traders sometimes implement technical indicators such as moving averages, Bollinger Bands, and breakpoints which are built upon historical data and are used to predict future price movements. How Analytics Relates to Algo TradingAnalytics are relied upon in the concept of algorithmic trading where software is programmed to autonomously signal and/or execute buy and sell orders based upon a series of predetermined factors. In the institutional space, Algo-trading has become vastly competitive over the years as trading institutions seek to outperform competitors through automated systems and the virtual application of trading strategies.The digestion and computation of analytics are also seen in the emerging field of high-frequency trading, where supercomputers are used to analyze multiple markets simultaneously to make near-instantaneous automated trading decisions. Platforms that support HFT have the capability to significantly outperform human traders.This is due to the innate ability to be able to comprehensively analyze big data sets while taking under do consideration an innumerable sum of factors that humans are incapable of comprehending in such speed. Additionally, analytics are seen with backtesting. Backtesting is used by traders to test the consistency and effectiveness of trading strategies and software-based trading solutions against historical price data. Backtesting also serves as an ideal playground for the further development of high-frequency trading as well as evaluating the performance of manual or automated trades. Analytics will continue to have an increasingly significant role in trading as emerging technologies and the advancement of trading applications progress beyond human capability. Read this Term firm, a leading Bitcoin wallet recently moved 2,395 Bitcoin from Coinbase to a digital wallet. The total value of the mentioned transaction stands at around $79 million.
The cryptocurrency market has seen immense selling pressure since 12 May 2021. The overall market cap of digital currencies has lost nearly 50% of its value in the last six weeks. However, the latest research note from JPMorgan, one of the world’s largest investment banks, highlights the signs of healing in the cryptocurrency market.
According to a recent report published by Bloomberg citing the research note by JPMorgan strategists including Josh Younger and Veronica Mejia Bustamante, the latest stability in the Bitcoin futures market is a positive sign for the cryptocurrency market. However, the overall crypto market is not healthy as of now.
“The near-term setup is challenging. There is likely still an overhang of underwater positions which need to be cleared through the market. So, while the cryptocurrency market shows signs that it is not yet healthy, it does also appear to be beginning the process of healing,” the research note states.
Earlier this month, Nikolaos Panigirtzoglou, Managing Director, Global Market Strategy at JPMorgan, said that the institutional demand for Bitcoin is weak. During an interview with Business Insider, Panigirtzoglou mentioned that a break below $30,000 is necessary for the world’s largest cryptocurrency to attract institutional investors.
Cryptocurrency Whales
Since May 2021, the leading cryptocurrency accounts have accelerated their transfers amid market volatility. Last week, a well-known Ethereum whale account moved 81,760 ETH from a digital wallet to cryptocurrency exchange Binance. Similarly, XRP whales have also started moving the world’s 7th largest cryptocurrency from leading digital exchanges. XRP wallet transferred 26 million coins from digital exchange Binance to a crypto wallet on Thursday 24 June at 17:00 UTC. Furthermore, the Bitcoin network saw a surge in whale transactions over the last few days. According to Whale Alert, a Blockchain Blockchain Blockchain comprises a digital network of blocks with a comprehensive ledger of transactions made in a cryptocurrency such as Bitcoin or other altcoins.One of the signature features of blockchain is that it is maintained across more than one computer. The ledger can be public or private (permissioned.) In this sense, blockchain is immune to the manipulation of data making it not only open but verifiable. Because a blockchain is stored across a network of computers, it is very difficult to tamper with. The Evolution of BlockchainBlockchain was originally invented by an individual or group of people under the name of Satoshi Nakamoto in 2008. The purpose of blockchain was originally to serve as the public transaction ledger of Bitcoin, the world’s first cryptocurrency.In particular, bundles of transaction data, called “blocks”, are added to the ledger in a chronological fashion, forming a “chain.” These blocks include things like date, time, dollar amount, and (in some cases) the public addresses of the sender and the receiver.The computers responsible for upholding a blockchain network are called “nodes.” These nodes carry out the duties necessary to confirm the transactions and add them to the ledger. In exchange for their work, the nodes receive rewards in the form of crypto tokens.By storing data via a peer-to-peer network (P2P), blockchain controls for a wide range of risks that are traditionally inherent with data being held centrally.Of note, P2P blockchain networks lack centralized points of vulnerability. Consequently, hackers cannot exploit these networks via normalized means nor does the network possess a central failure point.In order to hack or alter a blockchain’s ledger, more than half of the nodes must be compromised. Looking ahead, blockchain technology is an area of extensive research across multiple industries, including financial services and payments, among others. Blockchain comprises a digital network of blocks with a comprehensive ledger of transactions made in a cryptocurrency such as Bitcoin or other altcoins.One of the signature features of blockchain is that it is maintained across more than one computer. The ledger can be public or private (permissioned.) In this sense, blockchain is immune to the manipulation of data making it not only open but verifiable. Because a blockchain is stored across a network of computers, it is very difficult to tamper with. The Evolution of BlockchainBlockchain was originally invented by an individual or group of people under the name of Satoshi Nakamoto in 2008. The purpose of blockchain was originally to serve as the public transaction ledger of Bitcoin, the world’s first cryptocurrency.In particular, bundles of transaction data, called “blocks”, are added to the ledger in a chronological fashion, forming a “chain.” These blocks include things like date, time, dollar amount, and (in some cases) the public addresses of the sender and the receiver.The computers responsible for upholding a blockchain network are called “nodes.” These nodes carry out the duties necessary to confirm the transactions and add them to the ledger. In exchange for their work, the nodes receive rewards in the form of crypto tokens.By storing data via a peer-to-peer network (P2P), blockchain controls for a wide range of risks that are traditionally inherent with data being held centrally.Of note, P2P blockchain networks lack centralized points of vulnerability. Consequently, hackers cannot exploit these networks via normalized means nor does the network possess a central failure point.In order to hack or alter a blockchain’s ledger, more than half of the nodes must be compromised. Looking ahead, blockchain technology is an area of extensive research across multiple industries, including financial services and payments, among others. Read this Term tracking and Analytics Analytics Analytics may be defined as the detection, analysis, and relay of consequential patterns in data. Analytics also seeks to explain or accurately reflect the relationship between data and effective decision making. In the trading space, analytics are applied in a predictive manner in an attempt to more accurately forecast the price. This predictive model of analytics generally involves the analysis of historical price patterns that are used in an attempt to determine certain price outcomes. Analytics may also be structured with a descriptive model, where readers attempt to draw a correlation and better understanding as to how and why traders react to a particular set of variables. Traders sometimes implement technical indicators such as moving averages, Bollinger Bands, and breakpoints which are built upon historical data and are used to predict future price movements. How Analytics Relates to Algo TradingAnalytics are relied upon in the concept of algorithmic trading where software is programmed to autonomously signal and/or execute buy and sell orders based upon a series of predetermined factors. In the institutional space, Algo-trading has become vastly competitive over the years as trading institutions seek to outperform competitors through automated systems and the virtual application of trading strategies.The digestion and computation of analytics are also seen in the emerging field of high-frequency trading, where supercomputers are used to analyze multiple markets simultaneously to make near-instantaneous automated trading decisions. Platforms that support HFT have the capability to significantly outperform human traders.This is due to the innate ability to be able to comprehensively analyze big data sets while taking under do consideration an innumerable sum of factors that humans are incapable of comprehending in such speed. Additionally, analytics are seen with backtesting. Backtesting is used by traders to test the consistency and effectiveness of trading strategies and software-based trading solutions against historical price data. Backtesting also serves as an ideal playground for the further development of high-frequency trading as well as evaluating the performance of manual or automated trades. Analytics will continue to have an increasingly significant role in trading as emerging technologies and the advancement of trading applications progress beyond human capability. Analytics may be defined as the detection, analysis, and relay of consequential patterns in data. Analytics also seeks to explain or accurately reflect the relationship between data and effective decision making. In the trading space, analytics are applied in a predictive manner in an attempt to more accurately forecast the price. This predictive model of analytics generally involves the analysis of historical price patterns that are used in an attempt to determine certain price outcomes. Analytics may also be structured with a descriptive model, where readers attempt to draw a correlation and better understanding as to how and why traders react to a particular set of variables. Traders sometimes implement technical indicators such as moving averages, Bollinger Bands, and breakpoints which are built upon historical data and are used to predict future price movements. How Analytics Relates to Algo TradingAnalytics are relied upon in the concept of algorithmic trading where software is programmed to autonomously signal and/or execute buy and sell orders based upon a series of predetermined factors. In the institutional space, Algo-trading has become vastly competitive over the years as trading institutions seek to outperform competitors through automated systems and the virtual application of trading strategies.The digestion and computation of analytics are also seen in the emerging field of high-frequency trading, where supercomputers are used to analyze multiple markets simultaneously to make near-instantaneous automated trading decisions. Platforms that support HFT have the capability to significantly outperform human traders.This is due to the innate ability to be able to comprehensively analyze big data sets while taking under do consideration an innumerable sum of factors that humans are incapable of comprehending in such speed. Additionally, analytics are seen with backtesting. Backtesting is used by traders to test the consistency and effectiveness of trading strategies and software-based trading solutions against historical price data. Backtesting also serves as an ideal playground for the further development of high-frequency trading as well as evaluating the performance of manual or automated trades. Analytics will continue to have an increasingly significant role in trading as emerging technologies and the advancement of trading applications progress beyond human capability. Read this Term firm, a leading Bitcoin wallet recently moved 2,395 Bitcoin from Coinbase to a digital wallet. The total value of the mentioned transaction stands at around $79 million.